	what happens in the main steps	big obstacle
$S_N 2$	One main step: Nucleophile joins α carbon and leaving group leaves α carbon	steric hindrance
	There may also be an acid/base step.	
$S_N 1$	First main step: Leaving group leaves α carbon	stabilizing the
	Second main step: Nucleophile joins α carbon	carbocation
	There may also be an acid/base step, and/or a carbocation rearrangement step.	intermediate
E2	One step: Base takes β hydrogen, π bond forms between α and β carbons, leaving group leaves α carbon.	none
E1	First main step: Leaving group leaves α carbon	stabilizing the
	Second main step: Base takes β hydrogen, π bond forms between α and β carbons	carbocation
	There may also be an acid/base step, and/or a carbocation rearrangement step.	intermediate

what happens in S_N2, S_N1, E2, and E1 mechanisms

how to determine the mechanism for alkyl halides and alkyl sulfonates

	poor Nu / weak base	good Nu / weak base	good Nu / strong base
	O with no formal charge	Cl ⁻ , Br ⁻ , I ⁻ , ⁻ CN, S ⁻ , N ₃ ⁻	0 ⁻ , N ⁻
	(water or alcohol)	or N, P, or S with no formal charge	
methyl α-carbon	no reaction	S _N 2	S _N 2
1° α-carbon			Exception: E2 with <i>t</i> -butyloxide and $1^{\circ} \alpha$ -carbon
2° α-carbon	$S_N 1$ major,	S _N 2	E2
	E1 minor		
3° α-carbon	$S_N 1$ major,	S _N 1 major,	E2
	E1 minor	E1 minor	

In this table, the term " α -carbon" refers to the carbon attached to the leaving group.

The α -carbon in the alkyl halide or alkyl sulfonate must be sp³, not sp² or sp, for S_N2, S_N1, or E1 reactions to occur.

The table shows the major reactions for each situation. There may also be significant minor reactions.

This table will usually give the correct answer for most exam problems for most introductory ochem courses. But there may be some problems in some courses for which the table gives an incorrect answer.