kinetics of radioactive decay

A = kN	N = number of nuclides <i>remaining</i> at time t
(N)	N_0 = original number of nuclides (at time 0)
$\left \ln \left(\frac{1}{N_0} \right) \right = -kt$	N_0 = original number of nuclides (at time 0) $\frac{N}{N_0}$ = percentage of nuclides <i>remaining</i> at time <i>t</i> (in decimal form)
$\frac{N}{-}=e^{-kt}$	110
N_0	A = "activity" at time $t =$ rate of decay at time t
$\frac{N}{M} = \frac{A}{M} = \frac{m}{M}$	A_0 = original activity (at time 0)
$\overline{N_0} - \overline{A_0} - \overline{m_0}$	Standard units for rate of decay are: $Bq = \frac{1}{s} = \frac{\text{decays}}{\text{second}}$
$k \cdot t_{1/2} = \ln(2)$	s second
	m = total mass of nuclides remaining at time t
	m_0 = original total mass of nuclides (at time 0)
	k = decay constant. Standard units for $k = 1/s$
	k represents the percentage decay per second (in decimal form)
	$t_{1/2}$ = half-life

Be careful to note whether the problem is focusing on the number of nuclides *remaining* or the number that have been *lost*.

mass defect and binding energy

$\Delta m = (\text{total mass of all the reactants})$	In calculating Δm , use all nuclear masses, or use
– (total mass of all the products)	all atomic masses.
	Express Δm as:
	Δm
	number of reactant or product particles
	When considering the formation of a nucleus out
	of separate protons and neutrons, Δm is referred
2	to as the "mass defect" of the nucleus.
$\Delta E = \Delta mc^2$	Δm should be in SI units for ΔE to be in SI units
	c = speed of light
	Express ΔE as:
	ΔE
	number of reactant or product particles
	When considering the formation of a nucleus out
	of separate protons and neutrons, ΔE is referred
	to as the "binding energy" of the nucleus.
$E_{\rm photon} = hf$	h is Plank's constant
$c = f\lambda$	c = speed of light
c - jn	$f = \text{frequency}, \lambda = \text{wavelength}$