

The linear speed is the magnitude of the linear velocity. Linear velocity is symbolized as \vec{v} . Linear speed is symbolized as *v*.

The angular speed is the magnitude of the angular velocity. Angular velocity is symbolized by ω , and angular speed is symbolized by $|\omega|$.

If we assume that the object's direction of rotation is the "positive direction", then the angular velocity will be positive. In that case, the angular speed $|\omega|$ will equal the angular velocity ω . Therefore, in the context of uniform circular motion, for the sake of simplicity, many professors do not distinguish carefully between angular velocity and angular speed. So, many professors would use the formula $v=\omega r$, rather than $v=|\omega|r$.

The formula $v = |\omega|r$ only works when $|\omega|$ is measured using radian-based units, such as radians per second or radians per minute. The $v = |\omega|r$ formula does not work if $|\omega|$ is measured in rpm.