## Problems discussed in the videos:

## Math 1A Final 2006-12-13 12:30-3:30pm

You are allowed 1 sheet of notes. Calculators are not allowed. Each question is worth 3 marks, which will only be given for correct working and a clear and correct answer in simplified form. Write the final answer to each question on the coversheet, and attach the coversheet to your bluebook.

- 1. Evaluate the limit  $\lim_{h\to 0} \frac{(3+h)^{-1}-3^{-1}}{h}$ . Video (1) 2. Differentiate  $x/(1+x^2)$ . Video (1)
- Find the derivative of the function y = sin(cos(√x)). Video (1)
- 4. Find dy/dx if  $x^3 + x^2y + y^2 = 6$ . Video (1) 5. Find the derivative  $D^{57}e^{3x}$ . (D means d/dx) Video (2)
- Find lim<sub>x→0+</sub> x<sup>x<sup>2</sup></sup>. Videos (2)-(3)
- Find a positive number x such that x + 1/x is as small as possible. Video (4)
- 8. Use one iteration of Newton's method applied to the initial approximation  $x_1 = 5$  to estimate  $\sqrt{26}$ . Videos (5)-(6)
- Find the most general antiderivative of sin(θ)/cos<sup>2</sup>(θ). Videos (6)-(7)
- Find f given that f"(x) = 1/x², f(1) = 1, f(2) = 0. Video (8)

- 14. Find the derivative of  $y = \int_{\cos(x)}^{x} \cos(t^2) dt$ . Videos (8)-(9)
  15. Evaluate the integral  $\int_{1}^{64} \frac{1+x^{1/3}}{\sqrt{x}} dx$ . Video (9)
  Solution on page two of this document
- Find the volume of the region obtained by rotating the region bounded by the curves y = 1/x, y = 0, x = 1, x = 3, about the x-axis. Videos (10)-(11)
- 23. Use the method of cylindrical shells to find the volume generated by rotating the region bounded by  $y = x^4$ , y = 0, x = 1 about the y-axis. Videos (13)-(14)
- Find the average value of cos(x) sin(x)<sup>4</sup> on [0, π]. Video (12)

Solution to problem 15:

$$\int_{1}^{64} \frac{1+x^{1/3}}{\sqrt{x}} dx = \int_{1}^{64} \left(\frac{1}{\sqrt{x}} + \frac{x^{1/3}}{\sqrt{x}}\right) dx$$

$$= \int_{1}^{64} \left(x^{-1/2} + x^{-1/6}\right) dx$$

$$= \left[2x^{1/2} + \frac{6}{5}x^{5/6}\right]_{1}^{64}$$

$$= \left[2(64^{1/2}) + \frac{6}{5}(64^{5/6})\right] - \left[2(1^{1/2}) + \frac{6}{5}(1^{5/6})\right]$$

$$= 2(8) + \frac{6}{5}(\frac{6}{64})^{5} - (2 + \frac{6}{5})$$

$$= 16 + \frac{6}{5}(2)^{5} - 2 - \frac{6}{5}$$

$$= 14 + \frac{6}{5}(32) - \frac{6}{5}$$

$$= 14 + \frac{192}{5} - \frac{6}{5}$$

$$= 14 + \frac{186}{5}$$

$$= \frac{70}{5} + \frac{186}{5}$$

$$= \frac{256}{5}$$

$$= 51.2$$