the kinematics equations for constant v_x or constant v_y		
x equation	y equation	
$\Delta x = v_x \Delta t$	$\Delta y = v_y \Delta t$	

he l	kinematio	es equat	ions for	constant	v_x or	constant v_y	
							_

kinematics equations	for constant a_x	with changing v_x ,	or constant a_v with	h changing v_v
1			<i>J</i>	

x equations	missing variables	y equations	missing variables
$\Delta x = v_{ix} \Delta t + \frac{1}{2} a_x (\Delta t)^2$	V _{fx}	$\Delta y = v_{iy} \Delta t + \frac{1}{2} a_y (\Delta t)^2$	v _{fy}
$v_{fx}^2 = v_{ix}^2 + 2a_x \Delta x$	Δt	$v_{fy}^2 = v_{iy}^2 + 2a_y \Delta y$	Δt
$v_{fx} = v_{ix} + a_x \Delta t$	Δx	$v_{fy} = v_{iy} + a_y \Delta t$	Δy

how to solve general one-dimensional kinematics problems

1. Check if the problem involves con	stant velocity or constant acceleration with changing		
velocity—these are the situations to v	which the kinematics equations apply.		
Velocity is constant over an interval	of time when the net force is zero over that interval.		
Acceleration is constant when the ne	et force on the object is constant.		
If the acceleration is changing, then	you cannot use the kinematics equations.		
2. Check that all given units are con	sistent.		
3. For symbolic problems, write down	n the "given" symbols.		
4. Begin the sketch by drawing the o	bject's path. Build any given distance info into the sketch.		
5. Write down your axes , usually point	nting in the object's direction of motion.		
6. Write down the key points in time	e in your sketch (t_0 , t_1 , etc.). Set $t_0 = 0$. Build any given time		
and velocity information into your	sketch.		
7. Identify the question with a "?" a	nd a symbol; if possible, build the question into the sketch .		
8. Write down the "initial" and "fina	al" positions on the path.		
For complicated problems, you may	need to choose different initial and final positions for		
different parts of the solution.			
9. If the problem involves <i>constant</i>	9. If the problem involves constant acceleration with		
<i>velocity</i> , write down this "setup":	changing velocity, write down this "setup":		
$\Delta x = v_x \Delta t$ or $\Delta y = v_y \Delta t$	Δt , Δx , v_{ix} , v_{fx} , a_x or Δt , Δy , v_{iy} , v_{fy} , a_y		
10. In the setup from step 9, label the	variable the question is asking for with a "?",		
or label the variable you need to kn	ow in order to answer the question with the word "need".		
11. In the setup from step 9, write do	wn a number or symbol for each remaining variable.		
If the object starts at rest, then initia	al velocity is zero; if it ends at rest, then final velocity is zero.		
12. For constant velocity: When	12. For constant acceleration with changing velocity: When		
you know values for two of the	you know values for three variables in your setup, you can		
three variables in your setup, you	hree variables in your setup, you choose an equation to solve for one of the unknowns.		
can solve the equation for the	Identify the variable you don't care about, and choose the		
remaining variable.	equation that is missing that variable. Plug in and solve.		
13. Check that you answered the right question, and that you answered all parts of the question.			
Check that your results makes sense. For numerical answers, check that you included units.			
For symbolic answers, check that you	ar answer includes only the "given" symbols.		