Problem discussed in the videos:
2. Electrostatics II: Gauss' Law. An infinitely long insulating cylinder of radius R carries uniform charge per unit length λ, as shown in Figure 2.
a) Find the magnitude and direction of the electric field E as a function of distance r from the cylindrical axis, for $r<R$. Express the answer in terms of $\left\{\varepsilon_{0}, \lambda, R, r\right\}$.
b) Find the magnitude and direction of the electric field E as a function of distance r from the cylindrical axis, for $r>R$. Express the answer in terms of $\left\{\varepsilon_{0}, \lambda, r\right\}$.
c) Sketch the electric field magnitude E as a function of r for all r.
d) Find the magnitude and direction of the force $F_{\text {eec }}$ on an election ($q=-e$, $m=m_{e}$) placed at a distance $r=2 R$ from the cylindrical axis. Express the answer in terms of $\left\{\varepsilon_{0}, \lambda, e, r\right\}$.
e) If the electron is released from rest at $r=2 R$, how fast is it moving when it reaches the cylinder? Express the answer in terms of $\left\{\varepsilon_{0}, \lambda, e, m_{e}\right\}$.

$$
\text { FIGURE } 2
$$

$$
\lambda=\frac{\text { chg }}{\text { length }}
$$

