Table for use in solving problems:

Electron Proton Neutron H atom o particle (¹ / ₂ He nucleus) ¹ / ₂ C atom Unified mass unit (u)	$\begin{array}{c} \mbox{Max}(\mbox{lg}) \\ 9.109 \ 39 \times 10^{-31} \\ 1.672 \ 62 \times 10^{-27} \\ 1.674 \ 93 \times 10^{-27} \\ 1.673 \ 53 \times 10^{-27} \\ 6.644 \ 66 \times 10^{-27} \\ 1.992 \ 65 \times 10^{-28} \\ 1.660 \ 54 \times 10^{-27} \end{array}$	Mass Jul 0.000 548 579 1.007 276 1.008 665 1.007 825 4.001 506 12 1	Mass (MeV/c ³) 0.510 999 938,272 939,566 938,783 3727,38 11 177,9 931,494
---	--	--	--

Problem covered in videos (3)-(4)

Tritium ${}_{1}^{3}H$ has a mass of 3.016049u. Consider that it decays into hydrogen and two neutrons. The mass of hydrogen is 1.007825u and the mass of a neutron is 1.008665u. (a) Find the binding energy of tritium ${}_{1}^{3}H$ in eVs.

(b) It requires only 13.6eV to remove an electron from tritium. How does this value compare to the energy required to separate the nucleons of tritium. Explain.