

Nu is LiAlH ₄ , NaBH ₄ , RMgX, RLi, H ₂ O (acid or base cat.), ROH (base cat.)		
Attack on carbonyl (read from top down) (basic conditions)		
[starting material: aldehyde or ketone]		
Nu attacks carbonyl C, breaking π bond to carbonyl O.		
[product: alcohol (from H or R), diol (from H_2O), hemiacetal or hemiketal (from ROH)]		
Formation of diols, hemiacetals, and hemiketals is reversible.		

Nu IS KOIT		
Attack on carbonyl (read from top down)		
[starting material: aldehyde or ketone]	[product: aldehyde or ketone]	
(Carbonyl O gains a H ⁺ .)	(Carbonyl O loses a H ⁺ .)	
Nu attacks carbonyl C, breaking π bond to carbonyl O.	"Nu" leaves "carbonyl" C, π bond to "carbonyl" O forms.	
(Nu loses a H^+ .)*	(Second "Nu" gains a H ⁺ .)*	
[intermediate: hemiacetal or hemiketal]	[intermediate: hemiacetal or hemiketal]	
("Carbonyl" O gains a H ⁻ .)*	("Carbonyl" O loses a H ⁺ .)*	
"Carbonyl" O leaves (as water).	Subsequently, "carbonyl" O joins "carbonyl" C (as water).	
Subsequently, second Nu attacks "carbonyl" C.	"Nu" leaves "carbonyl" C.	
(Second Nu loses a H^+ .)	("Nu" gains a H ⁺ .)	
[product: acetal or ketal]	[starting material: acetal or ketal]	
	Revealing hidden carbonyl with H₃O⁺ (BOTTOM UP)	

category 2: two nucleophilic attacks by separate atoms (acid catalyzed) Nu is ROH

*It is conventional to combine these two steps into a single proton transfer. www.freelance-teacher.com organic chemistry: nucleophilic attack on aldehydes and ketones

category 3: two nucleophilic attacks by the same atom (acid or base cat.) Nu is RNH₂, where R is not necessarily a H or alkyl group (Nu is: ammonia, if R is H; primary amine, if R is alkyl; hydroxylamine, if R is OH; hydrazine, if R is NH₂ or derivative; semicarbazide, if R is NHCONH₂)

Attack on carbonyl (read from top down)	
[starting material: aldehyde or ketone]	[product: aldehyde or ketone]
(Carbonyl O gains a H ⁺ .) Nu attacks carbonyl C, breaking π bond to carbonyl O. (Nu loses a H ⁺ .)*	(Carbonyl O loses a H ⁺ .) "Nu" leaves "carbonyl" C, π bond to "carbonyl" O forms. ("Nu" gains a H ⁺ .)*
[intermediate: hemiaminal]	[intermediate: hemiaminal]
("Carbonyl" O gains a H ⁺ .)* "Carbonyl" O leaves (as water), while Nu attacks "carbonyl" C a 2^{nd} time, forming π bond. (Nu loses a H ⁺ a 2^{nd} time.)	("Carbonyl" O loses a H ⁺ .)* "carbonyl" O joins "carbonyl" C (as water). "Nu" loses π bond to "carbonyl" C, while ("Nu" gains a H ⁺ .)
[product: imine (from ammonia or primary amine); oxime (from hydroxylamine);	[starting material: imine, oxime, hydrazone, or semicarbazone]
semicarbazone (from semicarbazide)]	
\\	Revealing hidden carbonyl with H_3O^+ (BOTTOM UP)

Mechanism is shown for acid catalyst; you don't need to know the base-catalyzed mechanism.

category 3: two nucleophilic attacks by the same atom, Wittig reaction Nu is C in $R_2C=PPh_3$ (phosphorus ylide) (R's are alkyls or hydrogens)

1.2	
	Attack on carbonyl (read from top down)
	[starting material: aldehyde or ketone]
	Nu attacks carbonyl C, breaking pi bond to carbonyl O. [forms "betaine"] ("Carbonyl" O attacks P^+ .)
	[intermediate: oxaphosphetane]
	"Carbonyl" O leaves by attacking P a 2^{nd} time while Nu attacks "carbonyl" C a 2^{nd} time, forming π bond.
	[product: alkene]

www.freelance-teacher.com

NU IS K2NH	(secondary amine)
Attack on carbonyl (read from top down)	
[starting material: aldehyde or ketone]	[product: aldehyde or ketone]
(Carbonyl O gains a H ⁺ .) Nu attacks carbonyl C, breaking π bond to carbonyl O. (Nu loses a H ⁺ .)*	(Carbonyl O loses a H ⁺ .) "Nu" leaves "carbonyl" C, π bond to "carbonyl" O forms. ("Nu" gains a H ⁺ .)*
[intermediate: hemiaminal]	[intermediate: hemiaminal]
("Carbonyl" O gains a H ⁺ .)* "Carbonyl" O leaves (as water). <i>Then</i> " α " C loses a H ⁺ , forming π bond to "carbonyl" C.	("Carbonyl" O loses a H ⁺ .)* "carbonyl" O joins "carbonyl" C (as water). " α " C gains a H ⁺ , losing π bond to "carbonyl" C. <i>Then</i>
[product: enamine]	[starting material: enamine]
	Revealing hidden carbonyl with H₃O⁺ (BOTTOM UP)
Mechanism is shown for acid catalyst; you don't need to know the base-catalyzed	
mechanism.	

category 4: nucleophilic attack followed by elimination (acid or base cat.)

category 1: single nucleophilic attack, ALDOL REACTION (base catalyzed, cold) Nu is α-carbon in enolate

Attack on carbonyl (read from top down)	
[starting materials: two aldehydes or ketones]	[products: two aldehydes or ketones]
(Nu loses a H ⁺ .) Nu attacks carbonyl C, breaking π bond to carbonyl O. ("Carbonyl" O gains a H ⁺ .)	("Nu" gains a H ⁺ .) "Nu" leaves "carbonyl" C, π bond to "carbonyl" O forms. ("Carbonyl" O loses a H ⁺ .)
[product: β-hydroxy aldehyde or ketone]	[starting material: β-hydroxy aldehyde or ketone]
	Revealing hidden carbonyl with HO ⁻ , Δ (BOTTOM UP)

category 3: two nucleophilic attacks by the same atom, ALDOL CONDENSATION		
(base cat., Δ)		

Nu is u-carbon in chorate		
Attack on carbonyl (read from top down)		
[starting materials: two aldehydes or ketones]	[products: two aldehydes or ketones]	
("Nu" loses a H ⁺ .) Nu attacks carbonyl C, breaking π bond to carbonyl O. ("Carbonyl" O gains a H ⁺ .)*	("Nu" gains a H ⁺ .) "Nu" leaves "carbonyl" C, π bond to "carbonyl" O forms. ("Carbonyl" O loses a H ⁺ .)*	
[intermediate: β-hydroxy aldehyde or ketone]	[intermediate: β-hydroxy aldehyde or ketone]	
("Nu" loses a H ⁺ .)* "Carbonyl" O leaves (as hydroxide), while Nu attacks "carbonyl" C a 2^{nd} time, forming π bond.	("Nu" gains a H ⁺ .)* "carbonyl" O joins "carbonyl" C (as hydroxide). "Nu" loses π bond to "carbonyl" C, while	
[product: α , β -unsaturated aldehyde or ketone]	[starting material: α , β -unsaturated aldehyde or ketone]	
	Revealing hidden carbonyl with HO ⁻ , Δ (BOTTOM UP)	

Label ("*") the carbonyl or hidden carbonyl C acting as electrophile, and keep it labeled. Label ("*") the past or future carbonyl O, and keep it labeled. Label (" α ") the alpha-C acting as Nu, and keep it labeled.