momentum = $p = mv$	Momentum is a vector. From the definition we see that the units for momentum are $\mathrm{kg}rac{\mathrm{m}}{\mathrm{m}}$	
	S	

conservation of momentum and kinetic energy in different types of collisions					
	momentum	energy			
	Include the signs of the <i>v</i> 's.	Energy is a scalar, so we don't need			
	Momentum is a vector, so use	separate equations for <i>x</i> and <i>y</i> .			
	separate equations for <i>x</i> and <i>y</i> .				
elastic collision	momentum is conserved net p_i = net p_f implies:	kinetic energy is conserved net KE_i = net KE_f implies:	Solving the equations for conservation of momentum and energy for vice and vice we get:		
	$m_1 v_{1i} + m_2 v_{2i} - m_1 v_{1f} + m_2 v_{2f}$	$\frac{1}{2}m_1v_{1i} + \frac{1}{2}m_2v_{2i} = \frac{1}{2}m_1v_{1f} + \frac{1}{2}m_2v_{2f}$ So $m_1v_{1i}^2 + m_2v_{2i}^2 = m_1v_{1f}^2 + m_2v_{2f}^2$	$v_{1f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i} + \frac{2m_2}{m_1 + m_2} v_{2i}$		
			$v_{2f} = \frac{2m_1}{m_1 + m_2} v_{1i} + \frac{m_2 - m_1}{m_1 + m_2} v_{2i}$		
inelastic collision	momentum is conserved net p_i = net p_f implies:	kinetic energy is not conserved			
	$m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$				
totally inelastic collision objects stick together	momentum is conserved net p_i = net p_f implies: $m_{i} + m_{i} = -(m_{i} + m_{i})v_{i}$	kinetic energy is not conserved			
	$m_1 r_{1i} + m_2 r_{2i} = (m_1 + m_2) r_f$				

net $F_{\text{external}} \times t = \text{net } \Delta p$ $(F \times t = impulse)$

So, when net $F_{\text{external}}=0$, momentum is conserved; and when $t\approx 0$, momentum is approximately conserved. Otherwise, momentum is not conserved.

Conservation of momentum is useful for solving problems about brief ($t\approx 0$) collisions, separations, and joinings. Work and energy are useful for solving problems about velocity and displacement. Newton's Second Law plus kinematics is useful for solving problems about acceleration and time.