The Lens / Mirror Chart								
<i>i</i> =f <i>m</i> =0	inverted, <i>m</i> <0 real, <i>i</i> >0	inverted, <i>m</i> <0 real, <i>i</i> >0 same size, <i>ṁ</i> =1	inverted, <i>m</i> <0 real, <i>i</i> >0	$i = \infty$ $m = \infty$	upright, <i>m</i> >0 virtual, <i>i</i> <0	upright, <i>m</i> >0 virtual, <i>i</i> <0 same size, <i>ṁ</i> =1	upright, <i>m</i> >0 virtual, <i>i</i> <0	<i>i</i> =f <i>m</i> =0
I	shrunk, <i>ṁ</i> <1	I.	magnified, $\dot{m} > 1$		magnified, $\dot{m} > 1$		shrunk, <i>ṁ</i> <1	
8-		2f		f		location		∞
					of lens	diverging	g lens	
	converging lens or mirror , $f>0$				or mirror	or mirror	, <i>f</i> <0	

This chart describes the possible properties of the *image*, not of the object;

but the horizontal positions in the chart represent the possible locations of the *object*, not of the image.

sign conventions					
	positive	negative			
object distance object on same side as incoming light		object on opposite side to incoming light			
<i>o</i> or <i>s</i>	(always the case for a single lens or mirror)	(possible with multiple lenses or mirrors only)			
focal point distance converging lens or mirror		diverging lens or mirror			
f	(convex lens or concave mirror)	(concave lens or convex mirror)			
image distance real image		virtual image			
<i>i</i> or s'	(image on same side as outgoing light)	(image on opposite side to outgoing light)			
magnification, <i>m</i>	upright	inverted			
_	(image has same orientation to axis as object)	(image has opposite orientation to axis as object)			
	\dot{m} <1 means "shrunk" (image is smaller than object)				
	\dot{m} >1 means "magnified" (image is bigger than object)				
height	pointing up from principal axis	pointing down from principal axis			
h_o and h_i					

•	1		
converging ve	diverging	CONVAN VC	concave
converging vs.	urverging.	CONVER VS.	COncave

	converging, f>0	diverging, <i>f</i> <0	f =∞			
convex lens		murror	11111			
concave	marror	lens	plane mirror i=-o, so the image will be virtual, upright, and the same size as the object.			

ray tracing			
incoming	outgoing		
parallel to axis (P)	converging: <i>through</i> focal point on same side as outgoing light		
	diverging: <i>in line with</i> focal point on opposite side as outgoing light		
	plane mirror: parallel to axis, since focal point is at ∞		
to middle of lens or mirror (M)	out from middle of lens along same line as incoming ray		
	reflected from middle of mirror at same angle as incoming ray		
converging: <i>through</i> focal point on same side as incoming light (F)	parallel to axis		
diverging: <i>in line with</i> focal point on opposite side to incoming light			

The image is located where the outgoing light rays converge (real image), or where their "tracebacks" converge (virtual image). Only two rays are necessary to locate the image; usually P and M rays are most convenient.

equations				
$\frac{1}{f} = \frac{1}{o} + \frac{1}{i}$	the lens/mirror equation			
$i h_i$	the magnification equation	$\dot{i} < \dot{o}$ means image is shrunk (i.e., image is smaller than object)		
$m = -\frac{1}{o} - \frac{1}{h_o}$	the magnification equation	$\dot{i} = \dot{o}$ means image is same size as object		
-		$\dot{i} > \dot{o}$ means image is magnified (i.e., image is larger than object)		
$\dot{R} = 2\dot{f}$ for mirrors only				
$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) \text{ for lenses only ("lens-maker's equation")}$				
A surface that is convex toward the object has positive R; a surface concave toward the object has negative R.				
Some textbooks use a different form of the lens-maker's equation, with different sign conventions for the <i>R</i> 's.				
lens power = $\frac{1}{f}$, unit = diopter = $\frac{1}{m}$				

special situations for lenses and mirrors

object location	infinity	focal point		
incoming rays	all parallel to each other and to principal axis	all pass through focal point		
outgoing rays	all pass through focal point	all parallel to each other and to principal axis		
image location	focal point	infinity (i.e., no image)		
magnification	<i>m</i> =0 (i.e., image is shrunk to a point)	$m = \infty$ (i.e., no image)		