$\begin{array}{c} x \text{ equation} \\ (\text{constant } v_x) \end{array}$	<i>y</i> equations (constant a_y , changing v_y)	missing variables
$x_{\rm f} = x_{\rm i} + v_{\rm x} \Delta t$	$y_{\rm f} = y_{\rm i} + v_{\rm iy} \Delta t + \frac{1}{2} a_{\rm y} (\Delta t)^2$	${m v}_{ m fy}$
	$v_{\rm fy} = v_{\rm iy} + a_{\rm y} \Delta t$	y_i , y_f
	$v_{fy}^2 = v_{iy}^2 + 2a_y(y_f - y_i)$	Δt

the kinematics equations for two-dimensional projectile motion

how to solve two-dimensional projectile-motion problems

1. Check that the problem involves **projectile motion**. "Projectile motion" occurs when the only force on the object is the force of the Earth's gravity.

2. Check that all given units are **SI units**.

3. For a symbolic problem, write down the "given" symbols.

4. Begin your sketch by drawing the object's **path** of motion. The path for two-dimensional projectile motion is a parabola. Build any given **distance** information into your sketch.

5. Label the key **points in time** in your sketch (t_0 , t_1 , etc.). Usually, set $t_0 = 0$.

6. Write down your axes, pointing up and (usually) right.

7. Write down an **origin** for position. Your origin should usually be located at the furthest left x-coordinate and furthest down y-coordinate of the object, during the interval of projectile motion.

8. Label the **coordinates for position** (x_0 , y_0 , x_1 , y_1 , etc.), for each of the key points in time in your sketch. When possible, write down a specific value or symbol for each coordinate.

9. Identify the **question** with a "?". When convenient, represent what the question is asking you for with a *symbol*. When convenient, build the question into the sketch.

10. If you are given the **velocity** for a point in time, draw the velocity vector at that point in time, break the velocity vector into **components**, and build the components into your sketch.

If relevant, build into the sketch that the *vertical* velocity at the peak of the trajectory is 0.

11. Choose "initial" and "final" positions on the path. *Label* these positions *i* and *f*. The "initial" and "final" points are the two points that you plan to substitute into your kinematics equations.
12. Write down your "setup" for solving the projectile motion problem:

$$x_f = x_i + v_x \Delta t$$
 $\Delta t, y_i, y_f, v_{iy}, v_{fy}, a_y$
-9.8 $\frac{m}{c^2}$ or

13. In the setup from step 12, indicate the **question** with a "?"—or, indicate **what you need** to answer the question with the word "need".

14. In the setup from step 12, write down a specific number or symbol for each variable.

• •		
15. When you know values for three of	15. When you know values for four <i>y</i> -variables, you can	
the four <i>x</i> -variables, you can solve the	choose an equation to solve for one of the unknowns:	
$x_{\rm f} = x_{\rm i} + v_{\rm x} \Delta t$	Identify the variable you don't care about, and choose	
equation for the remaining variable.	the equation that is missing that variable. Plug in and	
	solve. You may need the quadratic formula:	
	If $a(\Delta t)^2 + b \Delta t + c = 0$, then $\Delta t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	If $a(\Delta t)^2 + b \Delta t + c = 0$, then $\Delta t = -\frac{2a}{2a}$	
For two-dimensional problems, you will usually need to use one component to find At then use		

For two-dimensional problems, you will usually need to use one component to find Δt , then use this value for the other component.

16. **Check** that you have answered the right question, and have answered all parts of the question. **Check** that your results makes sense. For a numeric answer, **check** that you included units. For a symbolic answer, **check** that your answer includes only the "given" symbols.