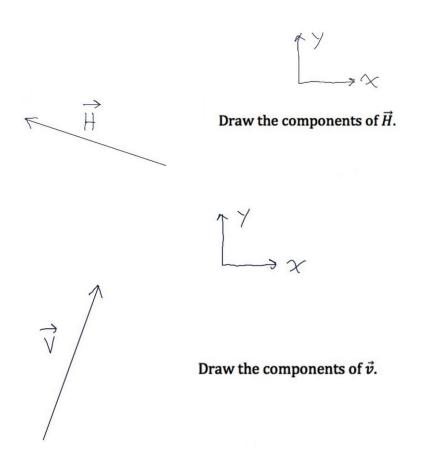
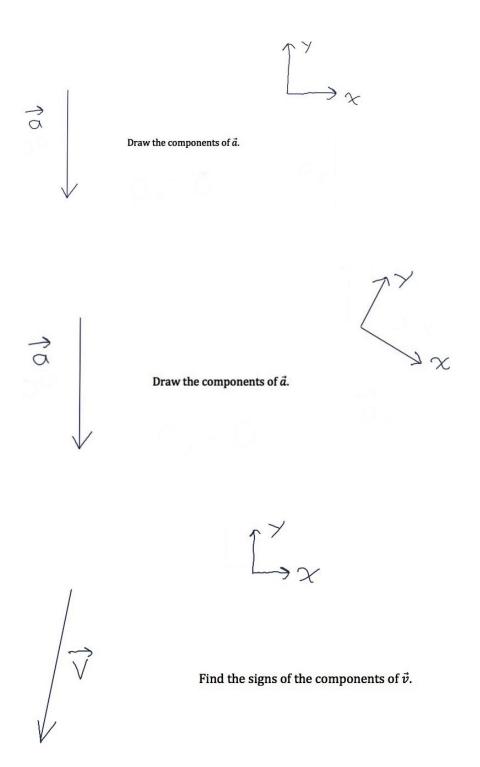
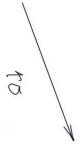
#### "VECTOR COMPONENTS" PROBLEMS


Solutions to these problems are available in the Solutions document, and in the "Vector components" video series.


You can find links to these resources at my website: www.freelance-teacher.com

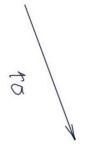
Links to the documents are also in the video description boxes for the YouTube videos.

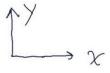
You can support these resources with a monthly pledge of \$1 (or more) at my Patreon page: www.patreon.com/freelanceteacher


## Video (1)





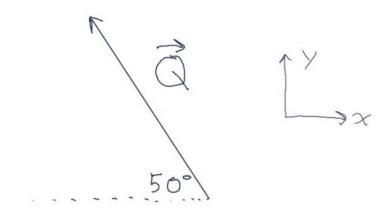




Find the signs of the components of  $\vec{a}$ .



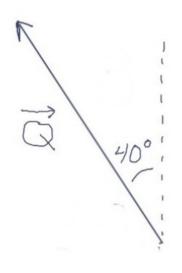


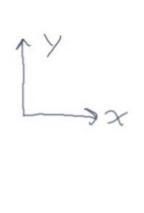
Find the signs of the components of  $\vec{a}$ .









Find the signs of the components of  $\vec{F}$ .


## **VECTOR COMPONENTS**



Vector  $\vec{Q}$  has a magnitude of 17 units. Determine each of the following, if possible

| Determine each of the following, if | possible.                  |
|-------------------------------------|----------------------------|
| $\vec{Q}$ =                         |                            |
| $\operatorname{dir} \vec{Q} =$      |                            |
| $ec{Q}$ arrow:                      |                            |
| Q =                                 |                            |
| $Q_x =$                             | $Q_y =$                    |
| $\operatorname{dir} Q_x =$          | $\operatorname{dir} Q_y =$ |
| $Q_x$ arrow:                        | $Q_y$ arrow:               |
| 101-                                | 101-                       |
| $ Q_x  =$                           | $ Q_{\nu}  =$              |





Vector  $\vec{Q}$  has a magnitude of 17 units. Determine each of the following, if possible.

| $\vec{Q}$ =   |   |
|---------------|---|
| dir $\vec{Q}$ | = |

 $\vec{Q}$  arrow:

Q =

$$Q_x =$$

 $\operatorname{dir} Q_x =$ 

 $Q_x$  arrow:

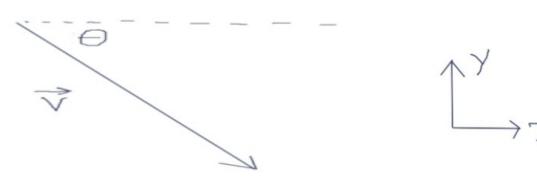
 $|Q_x| =$ 

$$Q_y =$$

$$\dim\,Q_y=$$

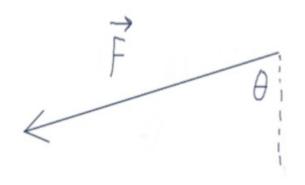
 $Q_y$  arrow:

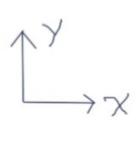
$$|Q_y| =$$


#### **VECTOR COMPONENTS**

True or false:

"You should use cosine to find *x*-components, and use sine to find *y*-components."


If the sentence is false, try to find one or more useful ways to rephrase the sentence so that it is true.


Problem:



Determine each of the following, if possible.

| $\vec{v} =$                    |                            |
|--------------------------------|----------------------------|
| $\operatorname{dir} \vec{v} =$ |                            |
| $\vec{v}$ arrow:               |                            |
|                                |                            |
| <i>y</i> =                     |                            |
| $v_x =$                        | $v_y =$                    |
| $\operatorname{dir} v_x =$     | $\operatorname{dir} v_y =$ |
| $v_x$ arrow:                   | $v_y$ arrow:               |
|                                |                            |
| $ v_x  =$                      | $ v_y  =$                  |





Determine each of the following, if possible.

F=

 $\operatorname{dir} \vec{F} =$ 

 $\vec{F}$  arrow:

F =

 $F_x =$ 

 $\operatorname{dir} F_x =$ 

 $F_x$  arrow:

 $|F_x| =$ 

 $F_y =$ 

 $\operatorname{dir} F_y =$ 

 $F_y$  arrow:

 $|F_y| =$ 

True or false:

"You should use cosine to find *x*-components, and use sine to find *y*-components."

If the sentence is false, try to find one or more useful ways to rephrase the sentence so that it is true.

Problem:



Vector  $\vec{v}$  points left with magnitude 8 m/s. Determine each of the following, if possible.

| Determine each of the following, if | 50331b1c.                  |
|-------------------------------------|----------------------------|
| $\vec{v} =$                         |                            |
| $\operatorname{dir} \vec{v} =$      |                            |
| ν arrow:                            |                            |
|                                     |                            |
| v =                                 |                            |
| $v_x =$                             | $v_y =$                    |
| $\operatorname{dir} v_x =$          | $\operatorname{dir} v_y =$ |
| $v_x$ arrow:                        | $v_y$ arrow:               |
|                                     |                            |
| $ v_x  =$                           | $ v_{\nu}  =$              |



 $\bigcup_{\lambda}^{\lambda}$ 

Determine each of the following, if possible.

F=

 $\operatorname{dir} \vec{F} =$ 

 $\vec{F}$  arrow:

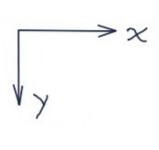
F =

 $F_x =$ 

 $F_y =$ 

 $dir F_x =$ 

 $\operatorname{dir} F_y =$ 


 $F_x$  arrow:

 $F_y$  arrow:

 $|F_x| =$ 

 $|F_y| =$ 





Determine each of the following, if possible.

| Determine each of the following, if possible. |                            |  |
|-----------------------------------------------|----------------------------|--|
| $\vec{F}$ =                                   |                            |  |
| $\operatorname{dir} \vec{F} =$                |                            |  |
| $\vec{F}$ arrow:                              |                            |  |
|                                               |                            |  |
| F =                                           |                            |  |
| $F_x =$                                       | $F_y =$                    |  |
| $\operatorname{dir} F_x =$                    | $\operatorname{dir} F_y =$ |  |
| $F_x$ arrow:                                  | $F_y$ arrow:               |  |
|                                               |                            |  |
| $ F_x  =$                                     | $ F_y  =$                  |  |



Vector  $\vec{a}$  has a magnitude of 0.

Determine each of the following, if possible.

*ā* =

 $dir \vec{a} =$ 

 $\vec{a}$  arrow:

a =

 $a_x =$ 

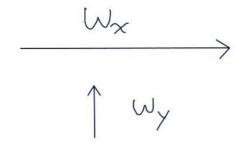
 $a_y =$ 

 $dir a_x =$ 

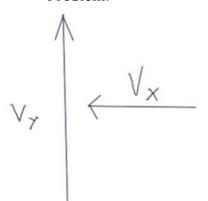
 $dir a_y =$ 

 $a_x$  arrow:

 $a_y$  arrow:


 $|a_x| =$ 

 $|a_y| =$ 


## Video (2)

Problem:

Draw  $\vec{w}$ .



Problem:



Draw  $\vec{v}$ .

 $|u_x| =$ 



 $u_x$  = -4 units and  $u_y$  = 7 units. Determine each of the following, if possible.

| $\vec{u}$ =                    |                            |
|--------------------------------|----------------------------|
| $\operatorname{dir} \vec{u} =$ |                            |
| $\vec{u}$ arrow:               |                            |
|                                |                            |
| u =                            |                            |
| $u_x =$                        | $u_y =$                    |
| $\operatorname{dir} u_x =$     | $\operatorname{dir} u_y =$ |
| $u_x$ arrow:                   | $u_y$ arrow:               |
|                                |                            |

 $|u_y| =$ 

$$\bigvee_{\lambda}^{\times}$$

 $v_x$  = 3 m/s and  $v_y$  = -5 m/s. Determine each of the following, if possible.

 $\vec{v} =$ 

 $\operatorname{dir} \vec{v} =$ 

 $\vec{v}$  arrow:

*v* =

 $v_x =$ 

 $\operatorname{dir} v_x =$ 

*v<sub>x</sub>* arrow:

 $|v_x| =$ 

 $v_y =$ 

 $\operatorname{dir} v_{v} =$ 

*v<sub>y</sub>* arrow:

 $|v_y| =$ 

| _                |    |   |     |     |
|------------------|----|---|-----|-----|
| $\mathbf{D}_{1}$ | rn | h | lei | n.  |
|                  |    |   |     | 11. |



 $v_x = -k$ , and  $v_y = q$ , where k and q are both positive.

Determine each of the following, if possible:  $\vec{v} =$ 

 $\operatorname{dir} \vec{v} =$ 

 $\vec{v}$  arrow:

*v* =

 $v_x =$ 

 $v_y =$ 

 $\operatorname{dir} v_x =$ 

 $\operatorname{dir} v_y =$ 

 $v_x$  arrow:

*v<sub>y</sub>* arrow:

 $|v_x| =$ 

 $|v_y| =$ 

$$\uparrow \gamma$$

$$\alpha_y = -8 \frac{\text{m/s}}{\text{s}}, \ \alpha_x = 0.$$

Determine each of the following, if possible.

*a* =

 $dir \vec{a} =$ 

*ā* arrow:

a =

 $a_x =$ 

 $dir a_x =$ 

 $an a_{\chi}$  –

 $a_x$  arrow:

 $|a_x| =$ 

 $a_y =$ 

 $dir a_y =$ 

 $a_y$  arrow:

 $|a_y| =$ 



Given:  $a_y = 0$ ,  $a_x = 0$ 

Determine each of the following, if possible.

 $dir \vec{a} =$ 

*ā* arrow:

a =

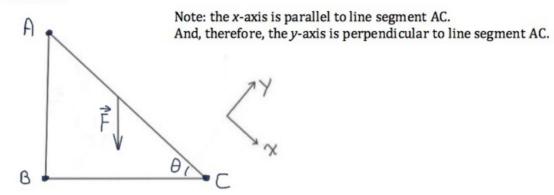
 $a_x =$ 

 $dir a_x =$ 

 $a_x$  arrow:

 $|a_x| =$ 

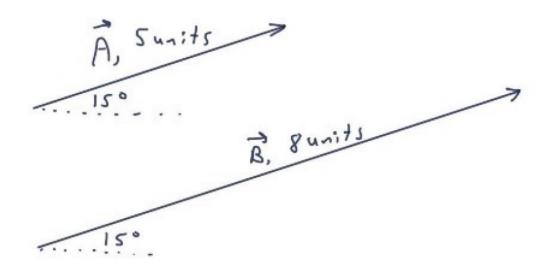
 $a_y =$ 


 $dir a_y =$ 

 $a_y$  arrow:

 $|a_y| =$ 

# Video (3)


#### Problem:



Determine each of the following, if possible.

| becomme each of the following, in possible: |                              |  |
|---------------------------------------------|------------------------------|--|
| $\vec{F}$ =                                 |                              |  |
| $\operatorname{dir} \vec{F}$ =              |                              |  |
| $\vec{F}$ arrow:                            |                              |  |
|                                             |                              |  |
| F =                                         |                              |  |
| $F_x =$                                     | $F_y =$                      |  |
| $\operatorname{dir} F_x =$                  | $\operatorname{dir} F_{y} =$ |  |
| $F_x$ arrow:                                | $F_y$ arrow:                 |  |
|                                             |                              |  |
| $ F_x  =$                                   | $ F_y  =$                    |  |

## Video (4)



#### Problem:

Suppose that  $\vec{A}$  = "magnitude 5 units, at an angle of 15° as shown". And suppose that  $\vec{B}$  = "magnitude 8 units, also at an angle of 15° as shown".

Suppose  $\vec{C} = \vec{A} + \vec{B}$ .

What is the magnitude and direction of  $\vec{C}$ ?

D, 8 units

Problem:

Suppose that  $\vec{A}$  = "magnitude 5 units, at an angle of 15° as shown". And suppose that  $\vec{D}$  = "magnitude 8 units, at an angle of 65° as shown".

Suppose  $\vec{E} = \vec{A} + \vec{D}$ .

What is the magnitude and direction of  $\vec{E}$ ?

www.freelance-teacher.com

True or false? If the sentence is false, reword it to be true. "To add vectors, add their magnitudes."

True or false? If the sentence is false, reword it to be true. "You should use cosine to find *x*-components, and use sine to find *y*-components."

# Video (5)

SUMMARY fill in the blanks

| fill in the blanks                                                                        |
|-------------------------------------------------------------------------------------------|
| How to draw the components of a vector:                                                   |
|                                                                                           |
|                                                                                           |
|                                                                                           |
|                                                                                           |
| Every nonzero component has two parts:                                                    |
| A "magnitude" is:                                                                         |
| Ti magnitude 15.                                                                          |
| If a vector is parallel or anti-parallel to the <i>x</i> -axis, then:                     |
|                                                                                           |
| A similar pattern holds when a vector is parallel or anti-parallel to the <i>y</i> -axis. |
| To draw the overall vector, based on the components:                                      |
|                                                                                           |
|                                                                                           |
| To add nonnerallel vectors do not add their magnitudes                                    |
| To add nonparallel vectors, do <b>not</b> add their magnitudes. Instead:                  |

### **VECTOR COMPONENTS**

# SUMMARY continued fill in the blanks

What exactly do each of the symbols in the following table mean?

symbols for describing a vector  $\vec{A}$ 

| symbols for describing a vector 71 |                              |
|------------------------------------|------------------------------|
| $\vec{A}$ =                        |                              |
| $\operatorname{dir} \vec{A} =$     |                              |
|                                    |                              |
| A =                                |                              |
|                                    |                              |
| $A_x =$                            | $A_y =$                      |
| $\operatorname{dir} A_x =$         | $\operatorname{dir} A_{y} =$ |
| $\operatorname{ull} A_{x}$ –       | un A <sub>y</sub> –          |
| $ A_x  =$                          | $ A_y  =$                    |
|                                    |                              |
|                                    |                              |